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A robust biomarker of large-scale network failure in Alzheimer’s disease
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Abstract

Introduction: Biomarkers for Alzheimer’s disease (AD) pathophysiology have been developed that
focus on various levels of brain organization. However, no robust biomarker of large-scale network
failure has been developed. Using the recently introduced cascading network failure model of AD, we
developed the network failure quotient (NFQ) as a biomarker of this process.

Methods: We developed and optimized the NFQ using our recently published analyses of task-free
functional magnetic resonance imaging data in clinically normal (n = 43) and AD dementia partic-
ipants (n = 28) from the Alzheimer’s Disease Neuroimaging Initiative. The optimized NFQ (oNFQ)
was then validated in a cohort spanning the AD spectrum from the Mayo Clinic (n = 218).
Results: The oNFQ (d = 1.25, 95% confidence interval [1.25, 1.26]) had the highest effect size for
differentiating persons with AD dementia from clinically normal participants. The oNFQ measure
performed similarly well on the validation Mayo Clinic sample (d = 1.44, 95% confidence interval
[1.43, 1.44]). The oNFQ was also associated with other available key biomarkers in the Mayo cohort.
Discussion: This study demonstrates a measure of functional connectivity, based on a cascading
network failure model of AD, and was highly successful in identifying AD dementia. A robust
biomarker of the large-scale effects of AD pathophysiology will allow for richer descriptions of the dis-
ease process and its modifiers, but is not currently suitable for discriminating clinical diagnostic cate-
gories. The large-scale network level may be one of the earliest manifestations of AD, making this an
attractive target for continued biomarker development to be used in prevention trials.

© 2017 The Authors. Published by Elsevier Inc. on behalf of the Alzheimer’s Association. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
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1. Introduction

Alzheimer’s disease (AD) pathophysiology manifests in
unique ways throughout the multiscale organization of the
central nervous system across the lifespan. A multitude of
biomarkers have been developed to measure various levels
of this pathophysiology (i.e., molecular, synaptic, cellular,
electrophysiological, and global cognitive). We recently
described the cascading network failure model of AD path-
ophysiology in default mode network (DMN) subsystems
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[1]. Developing a biomarker of this network failure is an
important next step to study this model.

In this study, we present a candidate biomarker of the
large-scale network-level manifestation of AD pathophysi-
ology. The spatial resolution and the ease of adding a func-
tional magnetic resonance imaging (fMRI) sequence into a
routine MRI protocol makes task-free fMRI (TF-fMRI) an
attractive modality in which to develop a biomarker of AD
pathophysiology at the large-scale systems level. However,
measurement error, biological variability, and expertise in
processing and interpreting nonlinear patterns of change in
connectivity, both increases and decreases, have hampered
the development of TF-fMRI as a robust biomarker of
network failure in AD.

2352-8729/ © 2017 The Authors. Published by Elsevier Inc. on behalf of the Alzheimer’s Association. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Functional MRI (fMRI) was initially found to demon-
strate decreased connectivity in the DMN associated
with AD dementia [2]. Subsequently TF-fMRI studies
have also found increases in connectivity in frontal lobe
portions of the DMN associated with AD dementia that
mirror age-related changes [3] but may eventually decline
with disease progression [1.,4]. Increases in functional
activation have been observed during task performance
in the medial temporal lobe in participants with mild
cognitive impairment (MCI) for many years [5], and this
has been thought to represent functional compensation.
A recent study lends significant support for the compensa-
tion hypothesis, given that increases in functional activa-
tion were associated with better cognitive performances
in amyloid positive cognitively normal individuals [6].

The increases and decreases in DMN connectivity associ-
ated with AD dementia, which may take nonlinear trajectories
[1,7], pose a significant challenge in developing a biomarker
of large-scale network changes. However, linear increases
and decreases may lend themselves to being combined into
amore stable ratio of DMN-related connectivity failure across
the AD spectrum. In this study, we use the results from our
recent TF-fMRI analyses of the Alzheimer’s Disease Neuro-
imaging Initiative (ADNI) as a discovery cohort for the devel-
opment of such a ratio of increases of connectivity over
decreases in connectivity we term the network failure quo-
tient (NFQ). This new optimized biomarker was then vali-
dated in a separate cohort from the Mayo Clinic.

2. Methods

Data used in the preparation of this article were ob-
tained from the ADNI database (adni.loni.usc.edu). The
ADNI was launched in 2003 by the National Institute on
Aging, the National Institute of Biomedical Imaging and
Bioengineering, the Food and Drug Administration, pri-
vate pharmaceutical companies, and nonprofit organiza-
tions as a $60 million, 5-year public-private partnership.
The primary goal of ADNI has been to test whether serial
MRI, positron emission tomography (PET), other biolog-
ical markers, and clinical and neuropsychological assess-
ment can be combined to measure the progression of MCI
and early AD. Determination of sensitive and specific
markers of very early AD progression is intended to aid re-
searchers and clinicians to develop new treatments and

Table 1
Subject Characteristics

monitor their effectiveness, as well as lessen the time
and cost of clinical trials.

2.1. ADNI participants

Clinically normal (CN, n = 43) and AD dementia (n = 28)
participants that were used in our recent analysis of connectiv-
ity within and between DMN subsystems were used as the dis-
covery cohort in these analyses (subject and scan identifiers
were previously published as supplementary material in Jones
etal. [1]). The basic demographics for this sample are listed in
Table 1. The description of the original analyses of these im-
ages is as described in Jones et al. [1]. All subjects with AD
dementia were amyloid-PET positive. Normal subjects were
defined clinically irrespective of amyloid status.

2.2. Mayo participants

All participants in the validation cohort were enrolled in
either the Mayo Clinic Study of Aging (MCSA) or the
Mayo Clinic Rochester Alzheimer’s Disease Research Cen-
ter. The Alzheimer’s Disease Research Center is a longitudi-
nal cohort study that enrolls referral participants at the Mayo
Clinic in Rochester, MN. The MCSA is a population-based
study of cognitive aging among Olmsted County, MN resi-
dents [8]. Enrolled participants are adjudicated to be CN or
have MCI by a consensus panel consisting of study coordina-
tors, neuropsychologists, and behavioral neurologists. All
participants are followed longitudinally including individuals
who progresses to dementia. Methods for defining CN, MCI,
and dementia in both these studies conform to standards in the
field [9,10,11]. All CN participants who had good quality
structural MRI, TF-fMRI, tau-PET (AV-1451), and
amyloid-PET (PiB) were included in this study. Participants
who were clinically impaired (either MCI or dementia)
were also included if they had these modalities available at
the time of this study and their amyloid-PET standardized up-
take value ratio exceeded 1.5 to increase the probability that
AD pathophysiology was contributing to their clinical impair-
ment [12]. For investigating the effect size of NFQ in the vali-
dation cohort, a subset of participants was used. There were
21 participants with AD dementia, and a subset of CN partic-
ipants were matched 2:1 on age, gender, and education to the
AD dementia participants. See Table 1 for details regarding
the cohort and the matched CN and AD subsets.

ADNI CN ADNI AD Mayo-matched CN Mayo AD Mayo Biomarker CN Mayo Biomarker CI
N 43 28 42 21 177 41
Age (Q1, Q3) 73 (69, 78) 74 (72,76.5) 67 (58, 73) 67 (59, 75) 67 (58,73) 68 (63,75)
Female % 25 (58) 13 (46) 24 (57) 12 (57) 75 (42) 17 (41)
Education (Q1, Q3) 16 (16, 16) 15.5 (14, 16) 14 (12.5, 16) 16 (16, 16) 16 (14, 17) 16 (13, 18)
MMSE (Q1, Q3) 29 (28, 30) 22 (21, 25) 29 (29, 29) 17 (10, 22) 29 (28, 29) 22 (17, 26)

Abbreviations: AD, Alzheimer’s disease; ADNI, Alzheimer’s Disease Neuroimaging Initiative; CI, clinically impaired; CN, clinically normal; MMSE, Mini-

Mental State Examination.
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2.3. Mayo standard protocol approvals, registrations, and
patient consents

These studies were approved by the Mayo Clinic and
Olmsted Medical Center Institutional Review Boards, and
written informed consent was obtained from all participants.

2.4. PET imaging methods

Amyloid-PET imaging was performed with Pittsburgh
Compound B [13] and tau-PET with AV-1451 [14,15].
Computed tomography scan was obtained for attenuation
correction. Late uptake amyloid-PET images were acquired
from 40 to 60 minutes, fluorodeoxyglucose (FDG) PET
from 30 to 40 minutes, and tau-PET from 80 to 100 minutes
after injection. PET images were analyzed with our in-house
fully automated image processing pipeline [16] where image
voxel values are extracted from automatically labeled regions
of interest (ROIs) propagated from an MRI template. An
amyloid-PET standardized uptake value ratio was calculated
as the median uptake in the prefrontal, orbitofrontal, parietal,
temporal, anterior and posterior cingulate, and precuneus
ROIs normalized to the cerebellar gray median. However,
voxels whose probability of being cerebral spinal fluid
(CSF) was greater than the probability of being gray matter
and greater than the probability of being white matter, based
on coregistered segmented MRI, were not included in the
calculation. An AD-characteristic FDG-PET meta-ROI was
calculated as the average of the median uptake in the angular
gyrus, posterior cingulate, and inferior temporal cortical ROIs
and normalized to pons and vermis median [17]. FDG-PET
data were not partial volume corrected. The average tau-
PET signal in an entorhinal cortex (EC) ROI normalized to
the cerebellar gray matter was used to compare with connec-
tivity measures. Similar results were obtained when using
other ROIs (e.g., inferior temporal ROI).

2.5. Structural MRI

MRI was performed on one of three 3 T systems from the
same vendor. The MRI measure was a FreeSurfer (v5.3)-
derived AD signature composed of the average of the
mean cortical thickness in the following individual ROIs: en-
torhinal, inferior temporal, middle temporal, and fusiform.

2.6. TF-fMRI preprocessing and network measures

TF-fMRI data were acquired using an eight-channel
head coil, gradient echo planar image (EPI),
TR = 3000 milliseconds, TE = 30 milliseconds, 90° flip
angle, 21 cm field of view, 64 X 64 in-plane matrix, slice
thickness 3.3 mm without gap, and 103 volumes were ob-
tained. Participants were instructed to keep their eyes open
during scanning. All TF-fMRI data sets with greater than
3 mm of translational movement, 3° of rotational movement,
or that failed visual inspection for obvious artifacts were
excluded from analysis.

The methods recently developed for analyzing TF-fMRI
data in the ADNI were adapted for the TF-fMRI portion of
this study [1]. The first three volumes were removed and
the time series within each voxel were despiked using AFNI’s
3dDespike program (http://afni.nimh.nih.gov). This process
was done before realignment, given that realignment and mo-
tion correction may be improved by this despiking procedure
[18]. Next, we performed slice-timing correction followed by
two pass realignment to the mean EPI. The structural images
were then coregistered to the mean EPI image.

Unified segmentation and normalization to the MCSA
template space was then performed. The MCSA Functional
Connectivity Atlas [19] high-dimensional independent com-
ponents of interest (i.e., ventral DMN [vDMN], posterior
DMN [pDMN], anterior ventral DMN [avDMN], and anterior
dorsal DMN [adDMN)]) were transformed to individual sub-
ject space using the inverse warps created during unified seg-
mentation and normalization for each subject. To create an
anatomically based “noise ROI” to be used in a component-
based noise correction [20] the subject space CSF and white
matter segmentations were binarized at a 0.9 probability
threshold and eroded by two voxels in each direction to avoid
contamination with gray matter voxels. The union of the bi-
narized and eroded images was used to extract the voxelwise
time series to be used in a principal component analysis. The
first six principal components were combined with the six mo-
tion parameters and their first temporal derivatives (18 total
regressors) to create a nuisance regressor matrix to be used
for further preprocessing.

Finally, AFNTI’s 3dBandpass program was used to detrend,
simultaneously band-pass filter (0.009-0.08 Hz), and perform
the nuisance regression using the nuisance regressor matrix.
Simultaneous filtering and nuisance regression avoids spectral
misspecification of motion artifact further reducing the impact
of the motion confound [21]. This program was also used for
time series variance normalization, masking, and smoothing
with 8 mm full-width half-maximum Gaussian kernel.

After preprocessing, a spatial-temporal regression was per-
formed within a multivariate framework incorporating all four
DMN subsystems of interest (see Fig. | for component maps)
using functions from the group independent component anal-
ysis of fMRI toolbox (GICA) of functional MRI Toolbox
(GIFT v2.0e) software package [22] as previously described
[1]. The four DMN subsystem measures that we had previously
shown to be linearly changing (both increases and decreases) in
the ADNI cohort across the disease spectrum as part of the
cascading network failure (i.e., the pDMN, vDMN,
posterior-to-ventral DMN, and posterior-to-anterior dorsal
DMN connectivity) were used to create a single summary
metric of network failure termed the NFQ.

pDMN_to_vDMN +pDMN_to_adDMN
pDMN+vDMN

NFQ =

However, each network element is treated equally in the
NFQ. Therefore, we also created two different summary
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Fig. 1. Schematic of DMN subsystem elements. The within-DMN subsys-
tems’ connectivity for the ventral DMN (A), posterior DMN (B), anterior
dorsal DMN (C), and anterior ventral DMN (D) are indicated with green
capital letters near the medial surface rendering of their respective intrinsic
connectivity networks used to create the DMN connectivity measures. The
between-subsystems connectivity is indicated with red dashed lines (a—f).
The ventral DMN hippocampal connectivity is indicated by the red dashed
line extending from the ventral DMN to the medial temporal lobe (g). The
surface renderings of the four independent components from the high-
dimensional independent component analysis (ICA) Mayo Clinic Study
of Aging Functional Connectivity Atlas [19] were created using the CARET
software package http://www.nitrc.org/projects/caret/. The entire compo-
nent maps were used in the dual-regression analysis. Elements A and B
are used in the denominator in the NFQ and elements a and b are used in
the numerator. This figure was originally published in the supplementary
material of Jones et al. [1]. Abbreviation: DMN, default mode network.

measures with weighting of the individual elements. The
first used the effect sizes comparing CN with AD dementia
subjects in our recent publication [1] as weights for each
of the network elements (WNFQ).

0.60 * pDMN_to_ vDMN+0.47xpDMN _to_adDMN
0.80 * pDMN+0.69 x vDMN

wNFQ =

We also used an unconstrained nonlinear optimization al-
gorithm (fminsearch function in MATLAB) to optimize the
weights that would give the largest effect size in the ADNI
data (optimized network failure quotient [ONFQ]). We veri-
fied that the algorithm came to a stable solution by assessing
the variability of the weights across various bootstrapped
samplings of the data.

1.11 *pDMN_to_.vDMN+0.8 * pDMN_to_adDMN
1.36 * pDMN+0.55 * vDMN

oNFQ =

2.7. Graph theory—based network measures

We compared the NFQ to other network measures based
on graph theory. We constructed graphs using the 68 ROIs
from the MCSA Functional Connectivity Atlas [19] as nodes
and the Fisher transformation of the Pearson correlation

coefficient between the preprocessed BOLD time series as
the edges. The Brain Connectivity Toolbox was used for
graph construction and network measures [23]. The edges
were normalized to range from O to 1 and weighted graph
metrics (global efficiency and nodal strength) were created
over the full range of network densities. The NFQ and all
four contributing network elements were then correlated
with global efficiency across network thresholds. The NFQ
was also correlated with each node’s centrality (i.e.,
weighted nodal strength) at a network density of 0.56 given
that this was the network density with the peak correlation
between NFQ and global efficiency.

2.8. Statistical procedures

A combination of MATLAB-based (Mathworks Inc, Na-
tick, MA) and R-based (http://www.R-project.org) software
packages was used to perform all statistical analysis. A boot-
strapping procedure was used to derive measures of accuracy
on sample statistics. Cohen’s d was used as a measure of the
effect size in comparing AD dementia with CN participants.
Kruskal-Wallis one-way analysis of variance was used for
continuous variables, with post hoc Mann-Whitney U tests
for pairwise differences. Chi-squared tests were used for cat-
egorical variables.

3. Results

3.1. Effect size of the network failure quotient in ADNI
data

In comparing AD dementia with CN participants in the
discovery ADNI data set, there was a main effect of DMN
subsystem network element on the observed distribution of
effect sizes obtained from 10,000 bootstrapped samples of
the data (F (13, 139,986) = 23,984, P = 0) (Fig. 2A). The
pDMN connectivity had the greatest absolute effect size of
any individual element (d = 0.78, 95% confidence interval
[CT] [0.78, 0.79]), but all three NFQ summary metrics of
network failure had greater effect sizes than any individual
element with oNFQ (d = 1.25, 95% CI [1.25, 1.26]) having
the highest effect size of all elements evaluated (Fig. 2B).

3.2. Effect size of the network failure quotient in Mayo
data

Given that the NFQ summary measure was designed to
summarize the cascading network failure in DMN subsystems
originally observed in the ADNI data set and oNFQ was opti-
mized on this same cohort, we sought to validate these findings
in a separate cohort. We selected all the available AD dementia
participants (n = 21) in the Mayo multimodal biomarker
cohort and matched 1:2 on age, gender, and education to CN
participants (Table 1). We then compared the effect sizes of
NFQ, wNFQ, and oNFQ across 10,000 bootstrapped samples
of this validation cohort. We found that there was a larger effect
size for all these summary metrics in this cohort relative to the
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Fig. 2. Superior effect size for the optimized network failure quotient (NFQ) in discovery and validation cohort. (A) Box plots of the absolute effect size
comparing clinically normal (n = 43) versus Alzheimer’s disease dementia (n = 28) for individual elements of within and between default mode network sub-
system connectivity and the proposed combined NFQ metrics described in the main text for 10,000 bootstrapped samples of the Alzheimer’s Disease Neuro-
imaging Initiative discovery cohort. (B) Plot comparing the 95% confidence intervals (CIs) from A, demonstrating no overlap between the optimized NFQ
(oNFQ) and any other connectivity measure. (C) Box plots of the absolute effect size comparing clinically normal (n = 42) versus Alzheimer’s disease dementia
(n = 21) for the proposed combined NFQ metrics described in the main text for 10,000 bootstrapped samples of the Mayo Clinic validation cohort. (D) Plot
comparing the 95% ClIs from (C), demonstrating no overlap between the oNFQ with the other two measures. In the two box plots, the red line indicates the
median, the box indicating the first and third quartile, whiskers marking the minimum and the maximum, notches indicating the 95% CI, and the red cross

indicating outliers.

ADNI cohort (Fig. 2C) with oNFQ (d = 1.44, 95% CI [1.43,
1.44]) modestly outperforming (Fig. 2D) both NFQ
(d = 1.38,95% CI [1.38, 1.39]) and wNFQ (d = 1.42, 95%
CI[1.41, 1.42]). For context, we also report the absolute effect
size of the other imaging biomarkers in this cohort excluding
amyloid-PET, as this was used to define the cohorts: FDG-
PET = 3.0, cortical thickness in AD signature
regions = 3.3, and tau-PET in the EC = 3.4.

3.3. Network failure quotient versus other biomarkers in
Mayo data

We next used the entire Mayo multimodal biomarker cohort
(n = 218) to further evaluate the potential of oNFQ as a
biomarker of AD pathophysiology by correlating oNFQ with
available key biomarkers of AD pathophysiology (Fig. 3).
We found that oNFQ was associated with age (r = 0.35,
P <.001), tau-PET in the EC (» = 0.43, P < .001), global
PiB (r = 0.40, P <.001), FDG-PET (r = —0.45, P <.001),
cortical thickness in AD signature regions (r = —0.44,
P <.001), and total score on Rey Auditory Verbal Learning

Test (AVLT) (r = —0.35, P <.001). In each instance, models
using oNFQ produced better fits than unoptimized NFQ
demonstrated by a significant reduction in Akaike’s informa-
tion criterion (reductions ranging from 39 to 46).

A multivariate model including all these biomarkers as
predictors for oNFQ was significant (F (6, 156) = 9.542,
P <.001, R* = 0.27, R%,q; = 0.24) with age (B = 0.34,
P < .001), entorhinal tau (B = 0.18, P = .08), and FDG
(B = —0.19, P =.04) being the most statistically significant
contributors to the model.

We repeated these analyses using only CN subjects and
found that all the key biomarkers were still correlated with
oNFQ. However, in the multivariate model (F (6,
143) = 8.293, P <.001, R* = 0.26, R*,5; = 0.23) age was
the only significant predictor (B = 0.39, P <.001).

3.4. Network failure quotient versus global and local
graph theory metrics

Each of the four elements that comprise the NFQ were
correlated with global efficiency, but the combined NFQ
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using oNFQ versus the ones using NFQ without optimization (see main text for details). Abbreviations: FDG, fluorodeoxyglucose; SUVR, standardized uptake
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showed the strongest correlation with global network effi-
ciency peaking at a network density threshold of 0.54 at
Pearson correlation coefficient of 0.52 (P < .001) for the
entire cohort (Fig. 4A) and 0.53 (P <.001) for the CN sub-
jects only (Fig. 4B). However, there was no difference in
global efficiency between AD dementia participants and
matched CN participants (Fig. 5A), but as previously noted,
there is a difference in NFQ between these two groups
(Fig. 5B). The NFQ is also correlated with the centrality
for nodes both inside and outside the DMN (Fig. 6).

4. Discussion

The NFQ is centered on a model of AD pathophysiology that
posits a network failure based on known brain connectivity pat-
terns. We found that the NFQ is a robust biomarker that both dif-
ferentiates AD dementia from CN people, but is also correlated
with a number of other biomarkers of AD pathophysiological
severity. The combined ratio has a larger effect size than any in-
dividual DMN subsystem (Fig. 2A) and demonstrates a larger
effect size in an independent cohort (Fig. 2C). Optimization
of the NFQ gives modest, but significant, improvements in
the performance demonstrated in the larger effect size
comparing CN with AD dementia (Fig. 2B and D) and in the
improved model fit in association with other AD biomarkers
across the disease spectrum (Fig. 3). Across the disease spec-
trum in the multivariate model, age was the most significant
explanatory variable for increasing NFQ (B = 0.34,
P <.001), with smaller contributions from FDG-PET hypome-
tabolism (B = —0.19, P = .04) and trend level contributions
from EC tau-PET signal (f = 0.18, P = .08). However, when
looking only at the control subjects in a multivariate framework,
age was the only significant predictor of the NFQ. This indicates
that none of the other key biomarkers of AD pathophysiology
are associated with key network physiology in the preclinical
disease phase. This highlights the utility of having biomarkers
for different levels of AD pathophysiology (e.g., both the mo-
lecular scale and the large-scale network scale). Although rele-
vant network changes are related to aging, as is AD risk in
general, we have previously shown that these network changes
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are more advanced in AD dementia [3], and the NFQ is able to
distinguished AD dementia from control subjects matched on
age as would be expected of a biomarker of AD pathophysi-
ology. Future work will be needed to determine the effect of dis-
ease stage on these relationships, with detailed evaluation of the
contributions of the increases and decreases in connectivity that
constitute the NFQ. In the present study, all four elements of the
NFQ appeared to contribute to its ability to distinguish AD de-
mentia from CN people given that none of the elements weights
approached zero during the optimization of NFQ. The weight-
ings in the oNFQ were largely consistent with the effect size for
the individual elements, in that the pPDMN was the most impor-
tant element. However, the between DMN subsystem connec-
tions involving the pDMN had greater weighting than the
within VDMN connectivity in the oNFQ relative to the
wNFQ. This may reflect the greater generalizability of
pDMN-related changes across AD phenotypes. However,
more detailed study across disease phenotypes is needed to
explore the validity of this hypothesis.

The brain is a complex system with inherent multiscale
organization, and AD pathophysiology manifests in unique
ways across these levels of brain organization. At the
large-scale brain network level, the DMN is affected in com-
plex ways. Given the interdependence of large-scale brain
networks, there are AD-related changes in multiple brain
networks beyond the DMN subsystems studied here
[24,25]. However, according to the cascading network
failure model, the pPDMN and the brain-wide compensatory
connectivity changes that occur in association with pPDMN
failure are directly related to B-amyloidosis in hubs of high
connectivity. Therefore, a robust biomarker that is able to
capture these pDMN changes will be relevant to AD patho-
physiology across phenotypic variants that may vary in the
extent that they impact other brain networks [26]. In addi-
tion, focusing on DMN subsystem elements with attractive
biomarker properties, such as having monotonic functional
forms across the disease spectrum, will increase the robust-
ness of the measure. Some DMN subsystem elements have
nonmonotonic forms and many non-DMN elements are
also likely to have nonmonotonic functional forms across

*p = 3.6x107

Fig. 5. Difference in global efficiency and NFQ between AD dementia and matched CN. (A) Mean global efficiency values are plotted with standard errors of
the mean for AD dementia participants (n = 21) and matched CN (n = 42) participants across the full range of network densities. There was no significant
difference in global efficiency between AD and CN at any network density. (B) The same comparison is made for NFQ demonstrating the significant increase
in NFQ in AD dementia participants relative to the age-, gender-, and education-matched CN participants. The bar plot displays the mean and the standard error
of the mean for each group. Note that the NFQ calculation does not require arbitrary network density thresholds as is needed for graph theory—based measures.
Abbreviations: AD, Alzheimer’s disease; CN, clinically normal; NFQ, network failure quotient.
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Fig. 6. Correlation between NFQ and nodal centrality. The nodal centrality (i.e., weighted strength) was calculated for each node (n = 68) in every subject
(n = 218) and correlated with NFQ. (A) The strength of the correlation between each node’s centrality and NFQ is encoded in a jet color map and the radius
of the node. (B) The same information is encoded in the lower figure in the radius of the nodes, but the color of the nodes indicates the atlas-defined community
membership of the node (i.e., visual, VIS; somatic sensory motor, SSM; task-positive, TP; task-negative or default mode network regions, TN; and temporal-
insular-limbic, TIL). This demonstrates that the NFQ correlates with nodal centrality in nodes in DMN regions and in non-DMN regions. Abbreviations: DMN,
default mode network; NFQ, network failure quotient.



160 D.A. Wiepert et al. / Alzheimers & Dementia: Diagnosis, Assessment & Disease Monitoring 6 (2017) 152-161

the AD spectrum. Disentangling monotonic and nonmono-
tonic connectivity changes is likely one of the key reasons
for the enhanced performance of looking at DMN subsystem
elements as biomarkers of AD pathophysiology. In addition,
combining the increases and decreases in connectivity into a
ratio may help normalize for individual differences in fMRI
measures of connectivity and between site variability
inherent in the multisite design of studies like ADNI. How-
ever, there remains measurement and non-neuronal physio-
logical noise contributing to variability in TF-fMRI that
can still be improved by leveraging advances made by the
Human Connectome Project in data acquisition and postpro-
cessing [27] that will be possible in ADNI-3. These advances
have the potential to significantly improve the biomarker po-
tential of the NFQ for AD pathophysiology.

We believe that the NFQ does capture AD-relevant brain
network reorganization, which supports global brain
network properties helping to maintain cognition in a
compensatory, yet ultimately detrimental, fashion. Graph
theoretical measures such as global efficiency, that capture
how integrated a network is at the global level, are associated
with intelligence [28], and we have observed that the NFQ is
associated with global efficiency across the disease spectrum
and in CN subjects (Fig. 4). However, global efficiency is
maintained in AD dementia subjects (Fig. 5A) while the
related NFQ is significantly increased (Fig. 5B). This sup-
ports the hypothesis that NFQ captures compensatory brain
network rearrangements that help to maintain global
network efficiency in setting of advancing AD pathophysi-
ology. This observation also suggests that measures of global
efficiency are poor network-level biomarker choices because
underlying network rearrangements, captured by the NFQ in
a single numeric summary, are taking place to keep global
network efficiency at a constant value across the disease
course. In addition, we have observed that the NFQ is asso-
ciated with local network properties beyond DMN regions
(Fig. 6), which supports the utility of the NFQ as a biomarker
that is capable of capturing AD-related brain network
changes that may take place outside the DMN as well. The
combined observations in this study strongly support further
exploration of the NFQ as a robust biomarker of the
network-level pathophysiology of AD.

The current investigation was limited, in that the evalua-
tion of the biomarker potential of the NFQ was focused on
a multisite study (i.e., ADNI) with validation in a single site
study (i.e., Mayo). Future investigations limiting site-related
variability with improved fMRI sequences and postprocessing
of data obtained in large sample sizes spanning the AD spec-
trum will be better suited to investigate the impact of disease
stage, AD phenotypes, and for testing complex system models
incorporating multiple AD pathophysiological biomarkers
across various scales of brain organization.

This study demonstrates the utility of using the cascading
network failure pathophysiological model to develop a
robust biomarker of the large-scale network effects of
AD pathophysiology. Having a robust biomarker of the

large-scale network level effects of AD pathophysiology
will allow for richer descriptions of the disease process
and its modifiers. In addition, the large-scale network level
may be one of the earliest manifestations of AD pathophys-
iology in the preclinical disease phase, as hypothesized by
the cascading network failure model. In that context, we
observed that no other biomarker tested in this study is asso-
ciated with preclinical network changes when controlling for
age, making the NFQ a very attractive target for continued
biomarker development to be used in prevention trials and
in studies of healthy brain aging.
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RESEARCH IN CONTEXT

1. Systematic review: The authors reviewed the litera-
ture using traditional (e.g., PubMed) sources and
meeting abstracts and presentations. There has not
been a report in the literature of a robust biomarker
of connectivity changes in default mode network
subsystems associated with cascading network fail-
ure observed in Alzheimer’s disease (AD).

2. Interpretation: Our findings demonstrate that the
network failure quotient is a promising candidate
biomarker that measures AD-related changes in
large-scale brain networks.

3. Future directions: This article proposes a new
biomarker for the large-scale network effects of
AD. Having such a biomarker will allow for more
complete studies of the AD spectrum, including
preclinical disease stages. Including this new mea-
sure in multimodal multiscale biomarker studies will
allow for the testing of complex system models of
AD.
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